

Center for Railroad Safety-Critical Excellence

Processor-based Regulatory Rule Compliant Risk Assessment & MTTHE Compliance May 14, 2002

Professor Ted C. Giras, Ph.D.

tgiras@virginia.edu

Center for Railroad Safety-Critical Excellence

Processor-based Rule Risk Compliant

ASCAP++ is Processor-based Regulatory Rule Compliant:

- System Hazard-free Proof-of-Correctness (Validation)
- System Non Hazard-free Proof-of-Safety Safety Risk (Verification)
- Operational Rule Book Compliance & Non Compliance
- Human-factors Dispatcher, Train Crew & MOW Behavior Interactions
- Events Passed at Danger Probabilistic Hazard Analysis (PHA)
- Look Ahead Train Speed & Braking Profile Discrete and Continuous Simulation
- Repair Times and Scheduled Maintenance Safety Impacts
- Accident-pair Determined from Mishap Train Dynamic Movement Intersection
- Risk Assessment; Societal Cost Versus Train Miles Traveled
- MTTHE Allocation and Compliance Validation & Verification
- Risk Containment Region High Degree of Confidence Bounds

Center for Railroad Safety-Critical Excellence

Risk Assessment Limitations

- Risk Assessment is a Cost Adds No New Functionality
- Not an Engineering Discipline Knowledge and Capabilities Very Limited
- Highly Analytical Requires Detailed System and Product Knowledge Not Broad-based for Productivity
- Driven by Regulatory Public Policy Not the Marketplace
- Limited Tool Sets Validation and Verification Limited

Center for Railroad Safety-Critical Excellence

Risk Assessment Safety Case

The Processor-based Regulatory Rule Product Safety Plan (PSP) is partitioned as:

"QUALITATIVE

- Definitions
- Basic Principles of Safety
- Assumptions
- Safety Claims
- Probabilistic Hazards Analysis (PHA)
- Design for Safety Documentation
- Validation and Verification Testing

QUANTITATIVE

- Hazard-free Risk Assessment
- Train Movement PHA based on Events Passed at Danger
- Non Hazard-free Risk Assessment
- MTTHE Compliance
- Risk High Degree of Confidence Bounds

Center for Railroad Safety-Critical Excellence

Hybrid Monte Carlo Simulation Methodology

- Unified Modeling Object-oriented Compliant
 - Classes to be Presented for Industry Standard Consideration
 - ◆ DTC, TCS, CTC, PTC, CBTC, HGC, MAGLEV
- Discrete Event Probabilistic Behavior
 - Stationary Objects (CAD. Wayside, Track Plan Appliances)
 - Mobile Objects (Trains, MOW Vehicles)
 - Agents (Dispatcher, Train Crews and MOW)
- Train Movement Algorithm Drives the Risk Assessment
 - Risk Exposure Determined by Train Movement Algorithm
- Continuous Look Ahead Train Dynamics
 - Precise time of Travel Estimation between Discrete Events
 - Continuous Braking Profile Train Dynamics at Mishap-pair Intersections

Center for Railroad Safety-Critical Excellence

Events Passed at Danger – Mishap-pair

Center for Railroad Safety-Critical Excellence

PHA Qualitative-Quantitative Comparison

Center for Railroad Safety-Critical Excellence

Mishap TRAIN-TO-TRAIN Collision-pair

TRAIN SPEED VERSUS DISTANCE -TO- GO PROFILES

TRAIN_1 -to- TRAIN_2 MISHAP-pair

ACCIDENT SEVERITY BASED ON TRAIN CLOSING DYNAMICS

Center for Railroad Safety-Critical Excellence

ASCAP++ Mean-Time-To-Hazard Metrics

- ASCAP++ System Hazard and Mishap Metrics:
 - Mean-Time-To-Events Passed at Danger
 - Mean-Time-To-Mishap
 - Likelihood of Occurrence of Events Passed at Danger (PHA)
 - Likelihood of Occurrence of a Mishap (PHA)
- Coverage Compliance Bounds Risk Societal Cost
 - Mean-Time-To-Hazardous Event (MTTHE) for each Processor
 - Mean-Time-To-Hazardous Event (MTTHE) for each Appliance

Center for Railroad Safety-Critical Excellence

MTTHE Compliance Risk Confidence Bounds

10 6 Train Miles Traveled

MTTHE Ensures that Risk is Bounded